log图标

toefl.viplgw.cn

  • 使用手机注册
  • 使用邮箱注册
  • 手机号不能为空!

    验证码不能为空!

    用户名不能为空!

    密码不能为空!

  • 邮箱不能为空!

    验证码不能为空!

    用户名不能为空!

    密码不能为空!

已有账号? 登录到雷哥托福
log图标
  • 使用手机找回密码
  • 使用邮箱找回密码
  • 手机号不能为空!

    验证码不能为空!

    密码不能为空!

  • 邮箱不能为空!

    验证码不能为空!

    密码不能为空!

加入生词本

listen

英['lɪs(ə)n] 美['lɪsn]
vi. 听,倾听;听从,听信
n. 听,倾听

已添加
×

我要举报草莓小菇凉评论

用户头像
草莓小菇凉:说的非常好,十分有道理,棒棒棒!

06-08 15:44:55

请选择举报类型:

举报电话:400 1816 180    举报QQ:2095453331
×
logo图标
分享到雷哥托福

分享成功图标分享成功

邀请名师点评成功,管理员正在安排老师进行点评。

继续做题 返回首页
支付雷豆失败图标 雷豆余额不足 购买雷豆 返回
报告题目错误
请选择错误类型:
请描述一下这个错误:

取消

下载雷哥托福APP

你的托福备考神器

雷哥托福

雷哥网托福APP

你的托福备考神器

去下载

题库>听力-3032 -Official 15

请联系小助手查看完整题目

(微信号:lgwKY2001)

00:00
00:00

Listen to part of a lecture in a psychology class.

For decades, psychologists have been looking at our ability to perform tasks while other things are going on, how we are able to keep from being distracted and what the conditions for good concentration are. As long ago as 1982, researchers came up with something called the CFQ, the Cognitive Failures Questionnaire. This questionnaire asks people to rate themselves according to how often they get distracted in different situations, like hum... forgetting to save a computer file because they had something else on their mind or missing a speed limit sign on the road. John?

I've lost my share of computer files, but not because I' m easily distracted. I just forget to save them.

And that's part of the problem with the CFQ.It doesn't take other factors into account enough, like forgetfulness. Plus you really can't say you are getting objective scientific results from a subjective questionnaire where people report on themselves. So it's no surprise that someone attempted to design an objective way to measure distraction. It's a simple computer game designed by a psychologist named Nilli Lavie. In Lavie's game, people watch as the letters N and X appear and disappear in a certain area on the computer screen. Every time they see an N, they press one key, and every time they see an X they press another, except other letters also start appearing in the surrounding area of the screen with increasing frequency which creates a distraction and makes the task more difficult.Lavie observed that people's reaction time slowed as these distractions increased. 

Well that's not too surprising, is it?

No, it's not.It's the next part of the experiment that was surprising.When the difficulty really increased, when the screen filled up with letters, people got better at spotting the Xs and Ns.Why do you think that happened?

Well, maybe when we are really concentrating, we just don't perceive irrelevant information.Maybe we just don't take it in, you know?

Yes, and that's one of the hypotheses that was proposed, that the brains imply doesn't admit the unimportant information.The second hypothesis is that,  yes, we do perceive everything, but the brain categorizes the information, and whatever is not relevant to what we are concentrating on gets treated as low priority.  So Lavie did another experiment, designed to look at the ability to concentrate better in the face of increased difficulty. This time she used brain scanning equipment to monitor activity in a certain part of the brain, the area called V5, which is part of the visual cortex, the part of our brains that processes visual stimuli.

V5 is the area of the visual cortex that's responsible for the sensation of movement.Once again, Lavie gave people a computer-based task to do.They have to distinguish between words in upper and lower-case letters or even harder, they had to count the number of syllables in different words. This time the distraction was a moving star field in the background, you know, where it looks like you are moving through space, passing stars.Normally area of V5 would be stimulated as those moving stars are perceived and sure enough, Lavie found that during the task area  of V5 was active.So people were aware of the moving star field.That means people were not blocking out the distraction.

So doesn't that mean that the first hypothesis you mentioned was wrong, the one that says we don't even perceive irrelevant information when we are concentrating?

Yes that's right, up to a point,  but that's not all.Lavie also discovered that as she made the task more difficult, V5 became less active, so that means that now people weren't really noticing the star field at all.That was quite a surprise and it approved that the second hypothesis that we do perceive everything all the time but the brain categorizes distractions differently, well, that wasn't true either.Lavie thinks the solution lies in the brain's ability to accept or ignore visual information.She thinks its capacity is limited. It's like a highway. When there are too many cars, traffic is stopped. No one can get on. So when the brain is loaded to capacity, no new distractions can be perceived. Now that maybe the correct conclusion for visual distractions, but more research is needed to tell us how the brain deals with, say, the distractions of solving a math problem when we are hungry or when someone is singing in the next room.

What is the lecture mainly about?

正确答案: D

网友解析

当前版本由 敌军还有5秒到达现场 更新于2017-03-23 11:13:53 感谢由 敌军还有5秒到达现场 对此题目的解答所做出的贡献。

(主旨题)选D 对应原文: For decades, psychologists have been looking at our ability to perform tasks while other things are going on. How we’re able to keep from being distracted and what the conditions for good concentration are. As long ago as 1982, researchers came up with something called the CFQ, the Cognitive Failures Questionnaire. This questionnaire asks people to rate themselves according to how often they get distracted in different situations. 数十年来,心理学家一直在观察我们在有干扰的情况下perform(执行)任务的情况,在研究我们如何避免注意力不被分散以及良好的注意力需要怎样的环境。因此这篇文章是讲大脑如何deal with(处理)分散注意力的。

我有更好解析

取消

提交

题目讨论 (2条评论)

  • 用户头像

    164563vofy

    真难

    • (1)
    • (1)
    • 回复(0)

    2021-03-08 15:09:43

  • 用户头像

    164563vofy

    真难

    • (1)
    • (1)
    • 回复(1)

    2021-03-08 15:09:03

      • 用户头像
        164563vofy

        kebushi

        • (1)
        • (1)
        • 回复(0)

        2021-03-08 15:09:19

  • 1

题库>听力-3032 -Official 15

请联系小助手查看完整题目

(微信号:lgwKY2001)

00:00
00:00

Listen to part of a lecture in a psychology class.

For decades, psychologists have been looking at our ability to perform tasks while other things are going on, how we are able to keep from being distracted and what the conditions for good concentration are. As long ago as 1982, researchers came up with something called the CFQ, the Cognitive Failures Questionnaire. This questionnaire asks people to rate themselves according to how often they get distracted in different situations, like hum... forgetting to save a computer file because they had something else on their mind or missing a speed limit sign on the road. John?

I've lost my share of computer files, but not because I' m easily distracted. I just forget to save them.

And that's part of the problem with the CFQ.It doesn't take other factors into account enough, like forgetfulness. Plus you really can't say you are getting objective scientific results from a subjective questionnaire where people report on themselves. So it's no surprise that someone attempted to design an objective way to measure distraction. It's a simple computer game designed by a psychologist named Nilli Lavie. In Lavie's game, people watch as the letters N and X appear and disappear in a certain area on the computer screen. Every time they see an N, they press one key, and every time they see an X they press another, except other letters also start appearing in the surrounding area of the screen with increasing frequency which creates a distraction and makes the task more difficult.Lavie observed that people's reaction time slowed as these distractions increased. 

Well that's not too surprising, is it?

No, it's not.It's the next part of the experiment that was surprising.When the difficulty really increased, when the screen filled up with letters, people got better at spotting the Xs and Ns.Why do you think that happened?

Well, maybe when we are really concentrating, we just don't perceive irrelevant information.Maybe we just don't take it in, you know?

Yes, and that's one of the hypotheses that was proposed, that the brains imply doesn't admit the unimportant information.The second hypothesis is that,  yes, we do perceive everything, but the brain categorizes the information, and whatever is not relevant to what we are concentrating on gets treated as low priority.  So Lavie did another experiment, designed to look at the ability to concentrate better in the face of increased difficulty. This time she used brain scanning equipment to monitor activity in a certain part of the brain, the area called V5, which is part of the visual cortex, the part of our brains that processes visual stimuli.

V5 is the area of the visual cortex that's responsible for the sensation of movement.Once again, Lavie gave people a computer-based task to do.They have to distinguish between words in upper and lower-case letters or even harder, they had to count the number of syllables in different words. This time the distraction was a moving star field in the background, you know, where it looks like you are moving through space, passing stars.Normally area of V5 would be stimulated as those moving stars are perceived and sure enough, Lavie found that during the task area  of V5 was active.So people were aware of the moving star field.That means people were not blocking out the distraction.

So doesn't that mean that the first hypothesis you mentioned was wrong, the one that says we don't even perceive irrelevant information when we are concentrating?

Yes that's right, up to a point,  but that's not all.Lavie also discovered that as she made the task more difficult, V5 became less active, so that means that now people weren't really noticing the star field at all.That was quite a surprise and it approved that the second hypothesis that we do perceive everything all the time but the brain categorizes distractions differently, well, that wasn't true either.Lavie thinks the solution lies in the brain's ability to accept or ignore visual information.She thinks its capacity is limited. It's like a highway. When there are too many cars, traffic is stopped. No one can get on. So when the brain is loaded to capacity, no new distractions can be perceived. Now that maybe the correct conclusion for visual distractions, but more research is needed to tell us how the brain deals with, say, the distractions of solving a math problem when we are hungry or when someone is singing in the next room.

What is the lecture mainly about?

正确答案: D

网友解析

写解析

敌军还有5秒到达现场 更新于2017-03-23 11:13:53

(主旨题)选D 对应原文: For decades, psychologists have been looking at our ability to perform tasks while other things are going on. How we’re able to keep from being distracted and what the conditions for good concentration are. As long ago as 1982, researchers came up with something called the CFQ, the Cognitive Failures Questionnaire. This questionnaire asks people to rate themselves according to how often they get distracted in different situations. 数十年来,心理学家一直在观察我们在有干扰的情况下perform(执行)任务的情况,在研究我们如何避免注意力不被分散以及良好的注意力需要怎样的环境。因此这篇文章是讲大脑如何deal with(处理)分散注意力的。

题目讨论 (2条评论)

  • 164563vofy 2021-03-08 15:09:43
    1

    真难

  • 164563vofy 2021-03-08 15:09:03
    1

    真难

      • 164563vofy
        1

        回复164563vofy

立即评论

热门活动

  • 听力 2023托福改革全面解读

    老师:chloe

    时间:3月30日 14:30-15:00

  • 听力 托福口语体验课

    老师:chloe

    时间:3月9日 14:00-15:00

  • 听力 托福写作体验课

    老师:jessica

    时间: 3月2日 17:00-18:00

回复评论

复制评论

解析提交成功,正在审核中

知道了

您已提交评论成功

确定

答案都没有怎么前进?

知道了

此来源单项已做完

知道了

是否确认删除?

取消

删除